以下是:400型十字桩尖底板350*的产品参数
产品参数 产品价格 180/件 发货期限 3 供货总量 6666 运费说明 15 最小起订 1 质量等级 A 是否厂家 是 产品材质 定制 产品品牌 三友金属 产品规格 齐全 发货城市 山东 产品产地 山东 加工定制 加工 产品型号 齐全 可售卖地 全国 产品重量 99 产品颜色 按要求 质保时间 48 外形尺寸 齐全 适用领域 工地 是否进口 国产 质量认证 11 产品功率 齐全 工作温度 9 400型十字桩尖底板350*,金格金属材料公司为您提供400型十字桩尖底板350*的资讯,联系人:张经理,电话:15562881888、15562881888,QQ:670505006,发货地:温江区柳城黄金路发货到浙江省 宁波市 海曙区、江东区、北仓区、镇海区、鄞州区、象山县、宁海县、余姚县、慈溪县、奉化区。 浙江省,宁波市 宁波市,简称“甬”,别称甬城、明州,浙江省辖地级市、副省级市、计划单列市,是上海大都市圈重要城市,国务院批复确定的中国东南沿海重要的港口城市、长江三角洲南翼经济中心,地处浙江省东北部、大陆海岸线中段,介于东经120°55'~122°16',北纬28°51'~30°33'之间,北濒杭州湾,东有舟山群岛为天然屏障,西接绍兴市,南邻台州市。截至2022年末,宁波市下辖6个区、2个县和2个县级市,总面积9816平方千米,常住人口961.8万人,城镇化率78.9%。
想要了解400型十字桩尖底板350*产品吗?点击观看我们上传的视频介绍,它将用更直观的方式展现产品的特点和优势,让您对产品有更深入的了解。以下是:400型十字桩尖底板350*的图文介绍
螺旋地桩尖使用五大注意事项:1,确保孔里面泥浆面的高,加强对于孔壁的压力。螺旋地桩在当地下的水位比较的高的软流塑以及松散的地方,**点要确保泥浆的质量,使得每一项的指标达到施工的要求,使泥浆能充分护壁。为了确保孔之中的泥浆面,在孔口的地方做一围堰和孔里面的泥浆进行相连,当提出钻具时,围堰里面的泥浆增补到孔里面,使得孔里面的泥浆一直高于地下的水位,并且泥浆面越高,在对于孔壁的压力就会越大,那么孔壁就会越稳定。2,控制钻进速度,泥包钻头的效果当工作到软流塑的土地时候,为了防止压入到地层,在工作时记录每一次的孔深,在下钻时从这个深度钻进;控制钻进的速度,减少对该层过大的扰动。3,螺旋地桩控制进尺在软流塑土地的时候,进尺的速度要比平常的时候慢一些,防止或降低在提钻的时候活塞效应所出现的阻力。4,确保钻头的表面光滑,防止或降低糊钻在软流塑的土地上面,在每一次提钻的时候,钻头的周边常常附着一些粘性土,一定要尽快的干净,降低钻头和周边粘性土的粘贴连接,防止造成糊钻。5,降低钻头以及钻杆的链接间隙要常常的检测钻头以及钻杆的链接卡方,在有磨损的时候需要尽快的处理,降低链接的间隙。超径是旋挖式的在软流塑以及松散的土地之中经常产生的问题,需要从防止入手。这就要求钻机的管理人员和操作人员认识到超径的危害,针对所有的地层,事先制定好防止的措施,防止施工之中导致更大的损失。螺旋地桩厂家对其发展的市场分析:1.目前国内生产螺旋地桩产品主要聚集在少数几家工厂在生产。2.就生产规模和厂家数量来说,螺旋地桩生产厂家数量更多,产量大约能占到国内金属地桩产量的百分之八十,产业聚集度很高,规模也很大。3.就目前产业进入难度来讲,由于螺旋地桩生产技术要求不高,进入门槛也并不高,一般来说,只要一家金属加工企业想进入这个行业,应该很快可以进入这个行业。4.当然,一个生产螺旋地桩多年的厂家,其生产加工经验的积累,技术的改进和累积,是一个新进入市场所没有的。5.螺旋地桩厂家要加强改善技术问题。
浙江宁波金格金属材料公司坚持“开拓进取、拼搏奉献、追求卓异、争创优良”的精神,以更高质量 十字桩尖和管理水平为客户提供满意 十字桩尖产品和服务,与广大客商真诚合作、共同发展、携手共创建筑防水新天地。
400型十字桩尖底板350*
1)管桩桩端持力层可选择为强风化岩层(《广东锤击管桩规程》P18 面规定:锤击式管桩可打入 N>50 的强风化岩层)、坚硬的粘土层或密实的砂层。汕头、湛江及珠江三角洲某些地区,基岩埋藏太深,管桩桩尖一般坐落在中密至密实的砂层上,桩长约30—40m,这是以桩侧摩阻力为主的摩擦桩或端承摩擦桩、我省其他许 多地区基岩埋藏较浅,约10—30m,且基岩风化严重,强风化岩层厚达几米、十几米,这样的工程地质条件,适合预应力管桩的应用。预应力管桩一般可以打入强风化岩层 1—3m,即可打入 N=50—60 的地方;(《广东锤击管桩规程》P18 面规定:锤击式管桩可打入 N>50 的强风化岩层)2)管桩不可能打入中风化岩和微风化岩层。这是一个基本概念,弄不清这个概念就无法正 确应用预应力管桩。3)预应力管桩的应用,同其他任何桩型一样都有其局限性。有些工程地质条件就不宜应用 预应力管桩。主要有下列四种:(1)孤石和障碍物多的地层不宜应用;(2)有坚硬夹层时不宜应用或慎用;(3)石灰岩(岩溶)地区不宜应用;石灰岩不能做管桩的持力层,除非石灰岩上面存在可作管桩持力层的其他岩土层。大多 数情况下,石灰岩上面的覆盖土层属于软土层,而石灰岩是水溶性岩石(包括其他溶岩), 没有强风化岩层,基岩表面就是新鲜岩面;在石灰岩地区、溶洞、溶沟、溶槽、石笋、漏斗 等等“喀斯特”现象相当发育。在这种地质条件下应用管桩, 常常会发生下列工程质量事故:①管桩一旦穿过覆盖层就立即接触到岩面,如果桩尖不发生滑移,那么贯入度就立即变得很小,桩身反弹特别厉害,管桩很快出现破坏现象;或桩尖变形、或桩头打碎、或桩身断裂,破损率往往高达 30—50%。②桩尖接触岩面后,很容易沿倾斜的岩面滑移。有时桩身突然倾斜,断桩后可很快被发现;有时却慢慢地倾斜,到一定的时候桩身被折断,但不易发现。如果覆盖层浅而软,桩身跑位相当明显。即使桩身不折断,成桩的倾斜率大大超过规范要求。③施工时桩长很难掌握,配桩相当困难。桩长参差不齐相关悬殊是石灰岩地区的普遍现象。④桩尖只落在基岩面上,周围土体嵌固力很小,桩身稳定性差,有些桩的桩尖只有一部分落在岩面上而另一部分却悬空着,桩的承载力难以得到保证。在岩溶地区打桩,时常可见到一种打桩的假象:当一根桩的桩尖附近的桩身混凝土被打碎以后,破碎处以上的桩身混凝土随着上部锤击打桩而连续不断地破坏,表面上看,锤击一下桩身向下贯入一点,实质上这些锤击能量都用于破坏底部柱身混凝土并将其碎块挤压到四周的土层中,打桩入土深度仅仅是个假象而已。1994年广州市西郊某工程,设计采用φ400 管桩,用D50柴油锤施打,取Rk=1200KN,其中一条桩足足打入 73m,打桩时每锤击一次管桩向下贯入一点,未发现异常,但此地钻孔资料表明0—19m为软土,19.90以下是微风化白云质灰岩,管桩不可能打入微风化岩。为了分析原因,设计者组织钻探队在离桩边约40㎝处进行补钻,当钻到地面以下11—12m处,碰到混凝土碎块而钻不下去,说明下面8—10m厚的地方全填满混凝土碎块,这全是桩身混凝土破碎造成的,在这个工地上,类似这样的“超长桩”占整桩数15%以上,给基础工程质量的检测和补救工作带来许多困难和麻烦。总之,凡是设计以石灰岩做持力层的管桩工程,没有一个设计师的日子是好过的。(4)从松软突变到特别坚硬的地层不宜应用。大多数石灰岩地层也属于这种“上软下硬,软硬突变”的地层,但这里指的不是石灰岩,而是其它岩石,如花岗岩、砂岩、泥岩等等,一般来说,这些岩石有强、中、微风化岩层之分,管桩以这些基岩的强风化层作桩端持力层是相当理想的,不过有些地区,基岩中缺少强 风化岩层、或者强风化岩层很薄,且基岩上面的覆土层比较松软,在这样的地质条件下打管 桩,有点类似于石灰岩地区,桩尖一接触硬岩层,贯入度就立即变小甚至为零。石灰岩地层 溶洞、溶沟多,岩面起伏不平,而这类非溶岩的岩面一般比较平坦,成桩的倾斜率没有石灰岩地区那么大,但打桩的破损率并不低。在这样的工程地质条件下打管桩,不管管桩质量多好,施工技术多高明,桩的破损率仍然会很高,这是因为中间缺少一层“缓冲层”。这个道 理如同铁钉一样,铁钉钉入有弹性的木板时,敲一下进去一些,不会发生什么问题;铁钉若 想打入坚硬的岩石时,只要敲几下就被敲弯而折屈。这样的工程地质条件在我省广州、佛山、 三水、中山、深圳等地都遇到过,打管桩的破损率高达 10—20%,因此,有些工程半途改桩型,有些做补强措施,有些也弄得难以收场。实际上, 基岩上部完全无强风化岩情况比较少见。但有些强风化岩层很薄,只有几十厘米,这样的地质条件应用管桩也是弊多利少。有些工程整个场区的强风化岩层较厚,只有少数承台下的岩层很薄,那么,这少数承台中的桩,收锤贯入度要放宽,单桩承载力设计值要降低,适当增加一些桩,也是可以解决问题的。以上探讨的是打入式预制桩不宜采用的工程地质条件,如果是采用静压方法情况就不同了,有些不宜应用管桩的工程地质条件也可以应用管桩了,所以大吨位的静力压桩是大有发展前景的。
目前,接近的现有技术:光伏发电项目一般分为地面光伏和屋面光伏两大类,目前适用于地面光伏的光伏板支架基础型式种类较多,其中主要有独立基础、条形基础、压块式基础、配重式基础、预制管桩基础、螺旋桩基础等,根据不同的光伏板布置方式、风荷载、地形地貌、地质条件,所选用的基础型式亦不相同。光伏发电项目的建设周期均较短,一般在3~4个月,其中支架基础是后续光伏支架安装的前道工序,是整个项目建设中至关重要的一环。根据多年的设计及施工经验,以上几种常见光伏支架基础具有以下特点:独立基础、条形基础的施工过程为场地平整、土方开挖、垫层支模、垫层混凝土浇注、基础支模、基础钢筋绑扎、基础混凝土浇注、土方回填,施工工艺流程较多,其中场地平整和土方开挖工作量较大,而且易受天气因素影响;模板支设、基础支模和钢筋绑扎需要大量的人工,施工周期长。独立基础、条形基础适用于地形较为平整、土质条件较好的情况。当地形高差较大时不建议采用,原因在于会造成基础立柱高度不一,支模和钢筋绑扎工作量大大增加,或支架支撑立柱高度不一,不利于工厂加工。压块式基础、配重式基础的施工过程为场地平整、基础支模、混凝土浇注及养护、压块运输及安装(配重式基础无此项)。两种基础型式的优势在于可以较少土方开挖工序,压块和配重基础均可以工业化、流水化施工,也可以在工厂预制好运输到现场进行施工,劣势在于仅适用于地形较为平整、土质条件较好的情况,当地基承载力较低时,基础不均匀沉降较难控制,若采用地基处理则不易控制造价。 预制管桩基础的施工过程为场地平整、工厂或现场预制、运输、桩基施工(静压或其他施工方式)。预制管桩基础可以解决压块式基础和配重式基础的问题,不仅仅适用于地形较为平整、土质条件较好的情况,对于地基承载力较低的情况均适用,而且可以解决地形高差变化;劣势在于施工时需要压桩,材料和施工成本较高,岩石出露的山地不适合。 螺旋桩基础的施工过为场地平整、现场打桩。该基础型式施工工序简单、施工速度快、成本低,工艺质量易保证,适用于地形较为平整、土质条件较好的情况,当地基土中富含卵石、碎石时,桩尖旋入施工困难,不适宜采用该基础型式。 综上所述,现有技术存在的问题是:(1)现有的光伏板支架基础型式施工易受天气因素、地形因素影响,材料和施工成本较高。 (2)现有的光伏板支架基础型式施工工艺流程较多,工作量较大,需要大量的人工,施工周期长。 解决上述技术问题的难度:场地平整和土方开挖工作量较大,而且易受天气因素影响;模板支设、基础支模和钢筋绑扎需要大量的人工,施工周期长。独立基础、条形基础适用于地形较为平整、土质条件较好的情况。当地形高差较大时会造成基础立柱高度不一,支模和钢筋绑扎工作量大大增加,或支架支撑立柱高度不一,不利于工厂加工。仅适用于地形较为平整、土质条件较好的情况,当地基承载力较低时,基础不均匀沉降较难控制,若采用地基处理则不易控制造价。 解决上述技术问题的意义:解决上述技术问题后将极大的推动山地太阳能光伏支架微孔灌注桩基础在工艺、效率方面的进步,在国内外山地太阳能光伏施工文献中也未见相关报道。 技术实现要素: 针对现有技术存在的问题,本发明提供了一种山地光伏支架微孔灌注桩基础系统、施工方法及应用。 本发明是这样实现的,一种山地光伏支架微孔灌注桩基础系统由φ140mm钻孔、c25细石混凝土、加劲材料和基础顶部预埋件组成。 具有钻设于山地坡体上的钻孔、布置于钻孔内的加劲材料,钻孔内浇注c25细石混凝土成桩,桩顶浇注直径300mm,高300mm的墩台,墩台顶部预埋180mm×180mm×8mm的钢板,上部与光伏支架立柱采用螺栓连接。 支架立柱下端外侧通过螺栓固定有多个三角支撑架,三角支撑架底部通过螺栓与预埋钢板连接;加劲材料为钢筋骨架,钢筋骨架设置有四根支撑钢筋,支撑钢筋中间焊接有多根横向箍筋。 钢筋骨架外侧焊接有螺旋状排列的连接钢筋,连接钢筋外侧焊接有多根等距排列的纵向连接钢筋。 本发明的另一目的在于提供一种山地光伏支架微孔灌注桩基础系统的施工方法,所述山地光伏支架微孔灌注桩基础系统的施工方法具体包括以下步骤: (1)使用反铲挖掘机将场地进行粗略平整,方便钻孔设备进出; (2)使用全站仪测定桩位及地面标高,桩的纵横向允许偏差满足设计要求; (3)按照设计要求的孔径、长度和精度,采用液压山地钻机在山地坡体上钻设钻孔,而后用空压机向钻孔中通入空气,反复清洗钻孔,人工清理孔底,检查孔深、孔径、孔壁、垂直度及孔底,合格后,使用装满土的塑料袋对孔口进行保护; (4)移走钻孔孔口塑料袋,再次复查孔深、孔径、孔壁、垂直度及孔底。将焊接好预埋件的加劲材料钢筋骨架插入钻孔中,钻孔内浇注混凝土,支模浇筑墩台混凝土。钢筋骨架包括竖向钢筋和套设在竖向钢筋上的环形箍筋,钢筋骨架的断面尺寸为63mm×63mm;竖向钢筋的直径为16mm,环形钢筋的直径为6mm;钢筋骨架的竖向钢筋的上端伸入墩台202mm。钢筋骨架放入前应先绑好砂浆垫块(或塑料卡);放钢筋骨架时,要对准孔位,吊直扶稳,缓慢下沉,避免碰撞孔壁。钢筋骨架放到设计位置时,应立即固定; (5)钻孔内连续浇筑混凝土,分层振捣密实,钻孔内浇注混凝土浇筑至地面高程,将钻孔孔口的山地坡体整平,整平面上搭设特制模板,模板中浇筑c25混凝土,反复振捣混凝土,浇筑至预埋钢板顶面高程,形成混凝土墩台。 步骤(1)中,场地平整时,首先地面障碍物,标定整平范围,施工区域布置坐标方格控制网,布置原则为先整体,后局部,高精度控制低精度;然后采用反铲挖掘机进行碾压平整。 本发明的另一目的在于提供一种所述的山地光伏支架微孔灌注桩基础系统在桩基础施工中的应用。 综上所述,本发明的优点及积极效果为:本发明采用山地太阳能光伏支架微孔灌注桩基础结构及其施工方法,降低了施工方法受到外部因素的影响,提高了山地光伏电站基础的施工效率,降低了施工成本,同时提高了基础承受荷载(光伏面板和支架荷载)的能力。本发明属于光伏发电工程技术领域基础变革的范畴,将极大的推动山地太阳能光伏支架微孔灌注桩基础在工艺、效率方面的进步,在国内外山地太阳能光伏施工文献中也未见相关报道。 附图说明 图1是本发明实施例提供的山地光伏支架微孔灌注桩基础系统的结构示意图。 图2是本发明实施例提供的细石混凝土桩的结构示意图。 图3是本发明实施例提供的预埋件钢板的结构示意图。 图4是本发明实施例提供的墩台的结构示意图; 图5是本发明实施例提供的三角支撑板结构示意图; 图中:1、山地坡体;2、钻孔;3、细石混凝土桩;4、钢筋骨架;5、箍筋;6、墩台;7、钢板;8、支架立柱;9、三角支撑板。 图6是本发明实施例提供的山地光伏支架微孔灌注桩基础系统的施工方法流程图。 具体实施方式 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。 本发明实施例提供了一种山地光伏支架微孔灌注桩基础系统及其施工方法,用以解决现有山地光伏电站基础施工效率低且施工成本较高的问题,同时提高基础承受荷载的能力。 如图1至图5所示,本发明实施例提供的山地光伏支架微孔灌注桩基础系统包括:山地坡体1、钻孔2、细石混凝土桩3、钢筋骨架4、箍筋5、墩台6、钢板7、支架立柱8、三角支撑架9。 钻孔2钻设于山地坡体1上,钻孔2内浇注c25细石混凝土桩3,桩顶浇注直径300mm,高300mm的墩台6,墩台6顶部预埋180mm×180mm×8mm的预埋件钢板7,预埋件钢板7上部与光伏支架立柱8采用螺栓连接。 支架立柱8下端外侧通过螺栓固定有多个三角支撑架9,三角支撑架9底部通过螺栓与预埋钢板7连接; 作为优选,加劲材料为钢筋骨架4,钢筋骨架4设置有四根支撑钢筋,支撑钢筋中间焊接有多根横向箍筋5。 作为优选,钢筋骨架4外侧焊接有螺旋状排列的连接钢筋,连接钢筋外侧焊接有多根等距排列的纵向连接钢筋。 与图5所示,本发明实施例提供的山地光伏支架微孔灌注桩基础系统的施工方法具体包括: s501:使用反铲挖掘机将场地进行粗略平整。 s502:使用全站仪测定桩位及地面标高,桩的纵横向允许偏差满足设计要求。 s503:采用液压山地钻机在山地坡体上钻设钻孔,而后用空压机向钻孔中通入空气,反复清洗钻孔,人工清理孔底,检查孔深、孔径、孔壁、垂直度及孔底,合格后,使用装满土的塑料袋对孔口进行保护。 s504:移走钻孔孔口塑料袋,再次复查孔深、孔径、孔壁、垂直度及孔底;将焊接好预埋件的加劲材料钢筋骨架插入钻孔中,钻孔内浇注混凝土,支模浇筑墩台混凝土。 下面结合具体实施例对本发明的技术方案作进一步的描述。 (1)使用反铲挖掘机将场地进行粗略平整,方便钻孔设备进出; 场地平整时,首先地面障碍物,标定整平范围,施工区域布置坐标方格控制网,布置原则为先整体,后局部,高精度控制低精度;然后采用反铲挖掘机进行碾压平整。 (2)使用全站仪测定桩位及地面标高,桩的纵横向允许偏差满足设计要求; (3)按照设计要求的孔径、长度和精度,采用液压山地钻机在山地坡体1上钻设钻孔2,而后用空压机向钻孔2中通入空气,反复清洗钻孔,人工清理孔底,检查孔深、孔径、孔壁、垂直度及孔底,合格后,使用装满土的塑料袋对孔口进行保护; (4)移走钻孔孔口塑料袋,再次复查孔深、孔径、孔壁、垂直度及孔底。将焊接好预埋件7的加劲材料钢筋骨架4插入钻孔2中,钻孔内浇注混凝土,支模浇筑墩台混凝土。钢筋骨架包括竖向钢筋和套设在竖向钢筋上的环形箍筋,钢筋骨架的断面尺寸为63mm×63mm;竖向钢筋的直径为16mm,环形钢筋的直径为6mm;钢筋骨架的竖向钢筋的上端伸入墩台202mm。钢筋骨架放入前应先绑好砂浆垫块(或塑料卡);放钢筋骨架时,要对准孔位,吊直扶稳,缓慢下沉,避免碰撞孔壁。钢筋骨架放到设计位置时,应立即固定; (5)钻孔内连续浇筑混凝土,分层振捣密实,钻孔内浇注混凝土浇筑至地面高程,将钻孔2孔口的山地坡体1整平,整平面上搭设特制模板,模板中浇筑c25混凝土,反复振捣混凝土,浇筑至预埋钢板顶面高程,形成混凝土墩台6。 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
选购400型十字桩尖底板350*来浙江省宁波市找金格金属材料公司,我们是厂家直销,产品型号齐全,确保您购买的每一件产品都符合高标准的质量要求,选择我们就是选择品质与服务的双重保障。联系人:张经理-15562881888,{QQ:670505006},地址:[温江区柳城黄金路]。